and other

Tidal flow predictions in support of MA\$ operations

Jeff Polton, National Oceanography Centre

- Modelling overview
- Automated data products live tides
- Bespoke data products
 - track following tidal data sets,
 - 4D cut out virtual ocean data set
- What's next?
- Summary

1. Marine Systems Modelling at NOC

(A.Coward)

Global modelling

1/12° (~9km)

Strategic partnerships: pull through to UK predictive systems with the **Met** Office (through the Joint Weather and Climate Research Programme)

Transnational applications. e.g. trajectories. Also climate modelling, predictability, sensitivity

If there was an oil rig here and there was a spill

Where might the oil go?

(K.Popova)

surface current speed (5 day mean)

1.Marine Systems Modelling at NOC

Basin scale regional modelling

(smaller domain —> more physics e.g. tides)

With tides, terrain following coordinates and advanced mixing

=> improved representation of recent sea ice loss

Unstructured model of the Bangladesh Ganges-Brahmaputra-Meghna delta

Impact of salt intrusion from tides and varying sea level on agrarian mega-population

Winner of 2015 ARCHER (HPC) IMPACT AWARD

noc.ac.uk

1. Marine Systems Modelling at NOC

European regional modelling

The High-Resolution Coastal Ocean Modelling

Coupled Regional Modelling:

- (i) coupled atmosphere-ocean-wave interactions
- (ii) coastal impacts of climate change surges and waves

Coastal Impacts Modelling:

(i) offshore renewable energy (unstructured modelling) (ii) tidal prediction on mobile phones

(iii) Carbon Capture and Storage leakage scenarios (iv) Larvae dispersal

NEMO Code Development:

- (i) Advection routines & wetting and drying
- (ii) Next generation (unstructured) ocean models

Shelf Sea Processes Attribution:

- (i) Large Eddy Simulation: pycnocline mixing
- (ii) Tidal / bathymetry interaction and Shelf Exchange processes

Many applications e.g. pH perturbations for CCS leak

2. Automated data products - live tides

anyTide

Tidal height

and current

predictions

on mobile

platforms

The UK's most comprehensive tide and current information in the palm of your hand

- Tidal current predictions for entire NW European at 1.8km resolution
- Tidal height predictions for NW European coastlines at 1.8km resolution
- Blend of NOC model and observational data
- Front end to modelling that we already do

NOC Server holds the data

Device queries server

=> device constructs predictions

Where we are:

- smart phone front end
- MARS glider pilot front end
- Mext step: interface for 3rd party software

Southampton

2. Automated data products - live tides

Talisker Blue Ocean unit_491 Royal Navy unit_544 Royal Navy unit_552 Royal Navy unit_553 Waimea

Sensor Data

Boeing SHARC 117 Boeing SHARC 127

MASSMO 3

RSAQUA MASSMO3 BOEING Autumn 2016

seebyte

- Tidal currents data layer
- direction (vectors)
- magnitude (heat colour)
- user control time scroll
- seamless delivery of updates

2. Bespoke data products - a) tidal data sets and interpretation

- Recovery assist
 - Scilly Isles, nowcast tidal atlas, Autumn'13
- Lost mooring fast response management
 - search radius given last known location/time and recovery vessel availability, Mar'15
- Post mission data analysis (Tides along tracks):
 - glider pressure+altimetry regression to predicted tides (A. Baker)
 - sea bird tracks, foraging statistics (A.Trevail, UoL)

Advected distance (km) from known location. Colour by days

L. Suberg et al. / Methods in Oceanography 10 (2014) 70-89 Autumn 2013 50°40'0"N TSZ 50°20'0"N 50°10'0"N 50°0'0"N 49°50'0"N 49°40'0"N 49.95

2.Bespoke data products - b) 4 dimensional synthetic ocean

Mission planning / synthetic ocean - Mar 16 AAOSN - Adaptive Autonomous Ocean Sampling Network

3. What's next? next generation ocean modelling

better predictive skill: assimilation of UAV data better physics: *ultra*HD resolution —> internal tides

3. What's next? next generation ocean modelling

Pycnocline Depth

Energy in internal wave field propagate onto shelf —> vertical mixing —> vertical fluxes of T,S, BGC

4. Summary

Global to regional modelling at fine resolutions

Host of applications:

- wave coupling,
- Next gen. Met Office models
- trajectory tracking, etc

Supporting MAS operations

- recovery assist now-casting —> tidal current data layer on
- MARS glider pilot portal
- lost mooring search planning
- bespoke tidal products along lat, lon tracks

Next steps

- anyTide interface for 3rd party software e.g. AUV basestation
- internal tide data products

jelt@noc.ac.uk

140,000 calc/s x world pop.