Autosub 2000 Under Ice

Matthew Kingsland
matkin@noc.ac.uk
So what is Autosub 2000 under ice?

Autosub 3

7m long, 3600 kg
60 hour (400 km) endurance
5000 D cell batteries
1600 m depth limit
0.1% Navigation Accuracy
What did Autosub3 do?

Mission 431 24/01/2009:
55km leg under the ice Shelf
34.5 Hours
183km total track

Paper:
Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat
Ice-shelf basal morphology from an upward-looking multibeam system
Antarctic Krill Under Sea Ice

Equipped with:
SideScan Sonar
Multibeam
CTD
What did Autosub3 do?
What Couldn’t it do?

- Limited abilities to get close to the sea ice – to study fresh water melt & salt water mixing
- Limited abilities to get near the carving point
Why build a new submarine when we could buy one?

BioCam Credit: https://ocean.soton.ac.uk/biocam
Reliability?

• Key to our current design ethos is reliability and making sure the data comes back.
• Damage to the nose of Autosub3 after a collision
• Pink – Rothera Research Base
• Green – Halley Research Base
• Yellow – Autosub 2 Loss Location
• Red – Commercial AUV Loss Location

Making sure the submarine & importantly the data comes back are key
Other considerations

- Extreme Weather
- Launch & Recovery Systems
- Different ship based operations
So what are we building?

Hardware Redundancy

Payload tubes complex including brains & connections to all the sensors

Power tube simple, no brains primarily for routing power

60kWhrs of Batteries

Thruster

Batteries

Actuator

Batteries

Batteries

Batteries

Batteries

Batteries

Batteries

Batteries

Noc.ac.uk
Communications

Payload Tube

Long Range Homing System
Iridium
GPS
Wifi

Power Tube

Acoustic Control
Iridium
GPS
Wifi

Acoustic Beacon
1 x Light Flasher
Iridium Beacon

AIS
2 x Light Flasher
Iridium Beacon
Key Components – Obstacle Avoidance System

- Sea Surface
- Seabed
Key Components - Battery

- Original Autosub 3 used 5000 non-rechargable D-Cells to achieve 400km range
- New pressure Tolerant Battery Design 5kWhrs
- 4 x modules each 1.25kWhrs
- 12 Batteries in the submarine gives ~58kWhrs @0°C
- Improve reliability
- Keep the weight down ~8kg in water
- Optimize space
- 30A current output <- investment for the future
Key Components – Payload Tube

- End Cap PCBs – Serial Communications, Ethernet Switches & Power routing
- Wifi, GPS & Iridium
- Front Seat & Back Seat Computers
- Critical & Non-Critical Power Supplies – 12V, 24V, 48V – 600W per channel (1.5kW total max for tube)
- 2 x Spare Slots
The Specification

• 5.5m Length – 0.9m Diameter
• 2200kg
• 58kWhrs @0°C Batteries ~80hrs with 300km Science Range + 100km Contingency
• 1.2 - 1.4 m/s Cruise Speed
• Cross form Actuators & Dual Thrusters
• Navigation Accuracy <0.01% = <0.1m per km
In water Trials

- In water trials late summer 2020
- Sensor & Deep Sea trials winter 2020/spring 2021
- Under Ice Trails 2021
Thank You

Matthew Kingsland
matkin@noc.ac.uk