Satellite Oceanography at the National Oceanography Centre

Christine Gommenginger, Meric Srokosz, Chris Banks, Val Byfield
Nadim Dayoub, Giuseppe Foti, Adrien Martin, Matt Hammond
Fatma Jebri, Clive Neil, Ben Timmermans, Stephen Carpenter
+ PhD students

noc.ac.uk
Providing end-to-end capability in ocean remote sensing

End-user needs

New sensor and mission proofs of concept

Satellite algorithms and validation

New observations from satellites

Applications & Services

Environmental Research

Commercial

Government

Industry

NGOs

Operational

• Work with space industry
• Scientific lead & definition of new sensors missions
• Airborne demonstration
• In-orbit proof of concepts
• Work with science & business partners
• New algorithms
• Calibration/Validation
• Demonstration products
• Work with software companies
• Production of new products and datasets
• Science
• Pull-through to forecasting
• Support downstream services
• Education & Training
• Capacity building & ODA
• Advice to government & agencies

noc.ac.uk
New Sensors & Missions: SEASTAR

• Leading the definition & development of new missions for the European Space Agency

• SEASTAR for ESA Earth Explorer
 ▪ Large satellite; ~450 Meuros
 ▪ Science lead by NOC with Ifremer (France)
 ▪ 70 international partners, 17 countries
 ▪ Partnership with Airbus D&S Ltd

• Innovative technology for science excellence
 ▪ Squinted along-track SAR interferometry
 ▪ 2D images of **total ocean surface current vectors**; wide-swath; **1km resolution**; unprecedented accuracy
 ▪ Unique capability, never flown in space before

• Critical new spaceborne observing capability
 ▪ **Collocated current-wind-wave** data to support modelling
 ▪ Special focus on strategic **coastal, shelf & polar seas (Arctic)**
 ▪ Surface divergence/convergence indicate vertical exchanges
 ▪ Key for ocean carbon and heat and climate projections
New Sensors & Missions: GNSS-R

• GNSS-Reflectometry (GNSS-R)
 - Earth Observation with signals of opportunity from Global Navigation Satellite Systems e.g. GPS, Galileo..
 - GNSS-R receivers are small, low-power and low-cost

• Long-term partnership with Surrey Satellite Technology Ltd (SSTL)
 - 2003: proof-of-concept on UK-DMC mission
 - 2014: full-scale demonstration on UK TechDemoSat-1
 - 2016: SSTL receivers used on NASA CYGNSS mission

• UK leadership in GNSS-R space technology & science
 - first global GNSS-R winds; first hurricanes with spaceborne GNSS-R
 - new applications to cryosphere and land monitoring

• Towards a new multi-satellite GNSS-R constellation
 - E.g. ESA SCOUT mission proposal (30MEuros)
New & better satellite measurements

- Innovative algorithms to extract new & better information from existing satellite data
 - Improved satellite altimetry within 10km of land to monitor coastal sea level variability & understand environmental drivers
 - Exploit sequences of satellite images to detect & monitor coastline and bathymetry changes anywhere in the world
 - New ocean surface current mapping with Sentinel-1 SAR Doppler Radial Velocity data, with applications to ship routing, safety at sea, pollutant dispersal, coastal management, etc.

Image sequence from Copernicus Sentinel-1 over Liverpool

Ocean eddy in Sentinel-1 Doppler signals offshore from Barcelona
Building long-term satellite datasets

- Growing satellite datasets now span several decades
 - Needs careful cross-validation to ensure multi-mission consistency

- ESA Climate Change Initiative (CCI) develops long-term climate-quality satellite data records for various Essential Climate variables (ECVs)

- NOC role in three CCI projects to date
 - Sea Level (coastal)
 - Sea State (extreme waves)
 - Sea Surface Salinity (changing water cycle)
EO capacity building & new services

• Many applications of satellite ocean data in developing countries and Small Island Developing States
 ▪ Large coastal populations vulnerable to environmental changes e.g. coastal flooding and cyclones
 ▪ Economically reliant on coastal ecosystems sensitive to climate change
 ▪ Limited resources for traditional monitoring

• Example ODA project for UK Space Agency in Mozambique, Madagascar & South Africa
 ▪ Produce bespoke products and information for coastal sea level, winds and waves from satellites & models
 ▪ Deliver tailored tools and local training for long-term EO data uptake by partners in Africa
 ▪ Working with SMEs to demonstrate new commercial services that could be deployed in other ODA countries and in the UK

http://www.satoc.eu/projects/c-rise/
Summary

- Satellite Earth Observation is well placed to address many of the challenges raised by hazards and changes in the marine environment
 - Many opportunities for UK to provide leadership in Earth Observation ocean science, mission & sensor technology and development of new EO marine datasets & services

- NOC provides end-to-end capability in ocean remote sensing
 - Both global and local applications, with increasing focus on coastal, shelf and polar seas

- Marine EO research is critically dependent on ESA and EU funding
 - No competitive funding for Marine EO Science in the UK

- International leadership in space technology & science achieved through academia/industry partnerships and leveraging UK investments in Europe

- Many more opportunities for ocean EO applications if consistent UK investment could be secured
Thank you

QUESTIONS?

CONTACT: CHRISTINE GOMMENGINGER
cg1@noc.ac.uk
NOC-SOUTHAMPTON